Acoustic metamaterial properties of a 2D closed cellular solid with entrained fluid

نویسنده

  • Vladimir DORODNITSYN
چکیده

Metamaterials are often defined as artificial compositions designed to exhibit desired physical properties. These materials attract a lot of research attention due to unusual behavior that may not yet have been seen in nature. Although there is no commonly accepted definition for metamaterials, they are typically associated with peculiar macroscale properties resulting from their substructure. The electromagnetic metamaterial concept was first developed in 1968. As the wave theory is similar in every field, the achievements in optics were reflected in acoustics several decades later. This allowed developing acoustic metamaterials with such extraordinary properties as negative refractive index, negative bulk modulus and mass density, acoustic lensing, sound wave spectral decomposition, and acoustic bandgaps. All of those features are not only attractive scientifically, but are of interest for plenty of potential applications, including sound and vibration insulation, waveguiding, audible and high-frequency filtering, and even seismic absorption. On the other hand, cellular solids and saturated porous media have been studied for a long time. These media are abundant in nature as granular soils, wood, rocks, bones, and foams. Wave analysis in such environments typically requires some crucial assumptions which do not allow extending a theory to other configurations. An example of such a constraint is the openness of the cells in a medium. Many porous media applications are found in geophysics particularly gas and oil extractions the permeability of the cells plays an important role. The ad-hoc dynamic models for such media operate only with open-cell configuration. Moreover, the study is limited to the low-frequency analysis, omitting the influence of wave scattering. The latter, however, is the key source of dispersion in acoustic metamaterials. Scattering may have two origins, geometrical or resonant. Bragg’s scattering is determined by the geometrical configuration, such that constructive interference occurs only when the incident wave matches the characteristic size of a unit cell. This makes such systems practically inconvenient. The concept of resonant scattering, introduced about a decade ago, has much fewer limitations and is mostly determined by the dynamics of matrix inclusions. In this thesis, a closed-cell cellular solid with thin vibrating walls and fluid-filled cells is i proposed as a new class of acoustic metamaterials. First, the dynamics of a prototypical square cell is investigated numerically considering periodic boundary conditions and taking into account fluid-structure interaction. The results are compared to Biot’s theory of saturated porous media in the limit of a closed-cells system. The proposed configuration is studied with respect to dispersion sources, showing the presence of local resonant behavior for different combinations of relative density and entrained fluid. Surprisingly, semi-analytical models can be used to provide a bottom-up explanation of the structure’s dynamic behavior. The presence of two pressure waves, slow and fast, is confirmed numerically and analytically. Finally, an experimental proof-of-concept was carried out. Periodic cellular solids represent a versatile acoustic metamaterial platform characterized by low cost, simple, scalable design, which makes possible achieving the desired macroscopic behavior using different types of fluids and bulk materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects

Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into...

متن کامل

Adaptive Quasi Static Ritz Vector (AQSRV)-based Model Reduction Scheme for the Numerical Simulation of Broadband Acoustic Metamaterials

This paper suggests the adaptive quasi static Ritz vector (AQSRV)-based model reduction scheme of applying an error indicator for efficient numerical simulation of the acoustic metamaterial systems with the characteristics of broadband, inhomogeneous, and anisotropic. In contrast to a conventional mode displacement method (MDM)-based model reduction scheme, the proposed method has characteristi...

متن کامل

Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials

The design of phononic crystals and acoustic metamaterials with tunable and adaptive wave properties remains one of the outstanding challenges for the development of next generation acoustic devices. We report on the numerical and experimental demonstration of a locally resonant acoustic metamaterial with dispersion characteristics, which autonomously adapt in response to changes of an incident...

متن کامل

Acoustic metamaterials with circular sector cavities and programmable densities.

Considerable interest has been devoted to the development of various classes of acoustic metamaterials that can control the propagation of acoustical wave energy throughout fluid domains. However, all the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of composite one-dim...

متن کامل

2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow

Many diseases are related to cerebrospinal .uid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF .ow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016